Skip to article frontmatterSkip to article content

📖 Reading material

Why neuroscience?

History of neuroscience and machine learning

Challenges for ML and neuroscience

References
  1. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. 10.1007/bf02478259
  2. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. 10.1037/h0042519
  3. Goodman, D. F., Benichoux, V., & Brette, R. (2013). Decoding neural responses to temporal cues for sound localization. eLife, 2. 10.7554/elife.01312
  4. Minsky, M., & Papert, S. A. (2017). Perceptrons: An Introduction to Computational Geometry. The MIT Press. 10.7551/mitpress/11301.001.0001
  5. Larsen, B. W., & Druckmann, S. (2022). Towards a more general understanding of the algorithmic utility of recurrent connections. PLOS Computational Biology, 18(6), e1010227. 10.1371/journal.pcbi.1010227